
VERSION DATE MODIFIER DESCRIPTION OF CHANGE

0.1 Mar 20 2020 Riccardo Sartori Initial draft.

Coding Standards

Change History

This project's frontend will be programmed in Javascript.

1. Files

1.1. File Naming

File names must be written in camelCase . If they contain a React component,
they must use UpperCamelCase .

1.2. File Structure

All React components must be in a folder called components . Redux states and
action creators must be in a folder called redux . There may be multiple
subfolders inside those two folders.

2. Formatting

2.1. Braces

Curly braces must be used even if they are not necessary

/* YES */

if(condition) {

 doSomething();

}

/* YES */

if(condition) {doSomething();}

/* NO */

if(condition) doSomething();

2.2. Statements

There can only be one statement per line. Statements can only have
whitespace characters behind them.

2.3. Maximum line length

A single line may only have up to 120 characters, counting whitespaces.

2.4. Line wrapping

It is heavily encouraged to only wrap lines at a higher syntactic level.

2.5. Ternary operator with parenthesis

Should the ternary operator require parenthesis, the : symbol must be
included in the same line as the first one closing and the second one opening.
The line cannot consist of anything else.

/* YES */

if(condition) {

 doSomething();

}

else {

 doSomethingElse();

}

/* NO */

if (condition) {

 doSomething();

} else {

 doSomethingElse();

}

/* YES */

const answer = (168 / 4)

 * 2;

/* NO */

const answer = (168

 / 4) * 2;

3. React

3.1. Destructuring props and state

Both props and state must be destructured before usage. If a key has the same
name in both the props and the state, it cannot be destructured.

3.2. Initializing the state

State must be initialized in the constructor.

3.3. Prop passing

Props must be properly indented when passed in multiple lines.

3.4. JSX

JSX code must always be in parenthesis

3.5 Dynamic JSX

Components passed dynamically must first be stored in a variable, and the
variable can then be passed.

/* YES */

const myComponent = someCondition ? (

 <div>

 <p>This comes out if true</p>

 </div>

) : (

 <div>

 <h1>This comes out if false</h1>

 </div>

);

<MyComponent

 firstProp={firstValue}

 secondProp={secondValue}

 thirdProp={thirdValue}

/>

4. Objects and Arrays

4.1 Trailing commas

const percentage = document.getElementById("percentage-

input-field").value;

/* YES */

let body = null;

if(percentage > 100) {

 body = (

 <p>That's not a valid value!</p>

);

}

else {

 body = (

 <React.Fragment>

 <h1>You have typed {percentage}%</h1>

 <p>That's a pretty good percentage!</p>

 </React.Fragment>

);

}

return (

 <div>

 {body}

 </div>

);

/* NO */

return (

 <div>

 {

 percentage > 100 ? (

 <p>That's not a valid value!</p>

) : (

 <React.Fragment>

 <h1>You have typed {percentage}%</h1>

 <p>That's a pretty good percentage!</p>

 </React.Fragment>

)

 }

 </div>

);

The use of trailing commas is heavily encouraged.

4.2 Mixing quoted and unquoted object keys

Objects should only have either quoted or unquoted keys constantly
throughout the project.

5. Naming & Declaring

5.1 Variables

Variables must be named using camelCase . Variables must not be abbreviated
if unnecessary, and must be clearly understandable by anybody, even outside
the project.

5.2 Usage of var

The usage of the var keyword is heavily discouraged. Use let and const
instead, and declare the variables as needed to limit their scope.

5.3 Destructuring in functions

Destructuring in functions is not allowed directly in the arguments. The
arguments may only be destructured within the function.

5.4 Classes

Class names must be written in UpperCamelCase .

const myArray = [

 "value1",

 "value2",

];

/* YES */

function myFunction(someObject) {

 const {someProperty, someOtherProperty} = someObject;

 // some code

}

/* NO */

function myFunction({someObject, someOtherProperty}) {

 // some code

}

6. JSDoc

6.1 React props

Component props must be documented using the @param option, and the prop
name must always be preceded by prop. .

6.2 Redux props

Component props that originate from a Redux state may not be documented.
Document the state itself instead.

6.3 Redux state

The initial state of the Redux state must be properly documented. Use the
@prop option for the keys.

/**

 * Shows a message

 *

 * @param {string} props.message The message to be shown

 */

class MessageShower extends React.Component {

 render() {

 const {message} = this.props;

 return (

 <p>{message}</p>

);

 }

}

/**

 * The initial state of this state.

 *

 * @prop {boolean} initialized Indicates if the state

is ready.

 * @prop {boolean} loading Indicates if the state

is loading the data.

 */

const init = {

 initialized: false,

 loading: false,

};

	Coding Standards
	Change History
	1. Files
	1.1. File Naming
	1.2. File Structure
	2. Formatting
	2.1. Braces
	2.2. Statements
	2.3. Maximum line length
	2.4. Line wrapping
	2.5. Ternary operator with parenthesis
	3. React
	3.1. Destructuring props and state
	3.2. Initializing the state
	3.3. Prop passing
	3.4. JSX
	3.5 Dynamic JSX
	4. Objects and Arrays
	4.1 Trailing commas
	4.2 Mixing quoted and unquoted object keys
	5. Naming & Declaring
	5.1 Variables
	5.2 Usage of var
	5.3 Destructuring in functions
	5.4 Classes
	6. JSDoc
	6.1 React props
	6.2 Redux props
	6.3 Redux state

